Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.
نویسندگان
چکیده
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
منابع مشابه
Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium.
BACKGROUND AND OBJECTIVE Cavitation bubbles have been shown to be the driving force of tissue cutting in 193 nm ArF excimer laser-based vitreoretinal microsurgery. In the present work we investigate the dynamics of cavitation bubbles inside a gelatin gel in a saline environment using fast flash microphotography. STUDY DESIGN/MATERIALS AND METHODS The screening influence of the saline medium w...
متن کاملTissue Dissection with Ultrafast Laser using Extended and Multiple Foci
Ultrashort lasers are typically utilized for tissue dissection by sequential application of tightly focused beam along a scanning pattern. Each pulse creates a small (on the order of 1μm) zone of multiphoton ionization (optical breakdown). At energies exceeding vaporization threshold cavitation bubble is formed around the focal volume. A continuous cut is formed if the rupture zones produced by...
متن کاملModeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology
In this paper, size distribution of nano-bubbles was measured by the reliable and fast method of laser diffraction technique. Nano-bubbles were produced using a nano-bubble generator designed and made based on hydrodynamic cavitation phenomenon in Venturi tubes. A Central Composite Design with Response Surface Methodology was used to conduct a five factor, five level factorial experimental desi...
متن کاملNumerical Solution for Gate Induced Vibration Due to Under Flow Cavitation
Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...
متن کاملInteraction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses
The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2010